Matrix of Z - module 1 Yuichi Futa Japan Advanced Institut of Science and Technology Ishikawa , Japan Hiroyuki

نویسندگان

  • Yuichi Futa
  • Hiroyuki Okazaki
  • Yasunari Shidama
چکیده

In this article, we formalize a matrix of Z-module and its properties. Specially, we formalize a matrix of a linear transformation of Z-module, a bilinear form and a matrix of the bilinear form (Gramian matrix). We formally prove that for a finite-rank free Z-module V , determinant of its Gramian matrix is constant regardless of selection of its basis. Z-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm and cryptographic systems with lattices [? ]. Some theorems in this article are described by translating theorems in [22], [24] and [18] into theorems of Z-module.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian Integers 1 Yuichi Futa Japan Advanced Institute of Science and Technology Ishikawa , Japan Hiroyuki Okazaki

Gaussian integer is one of basic algebraic integers. In this article we formalize some definitions about Gaussian integers [27]. We also formalize ring (called Gaussian integer ring), Z-module and Z-algebra generated by Gaussian integer mentioned above. Moreover, we formalize some definitions about Gaussian rational numbers and Gaussian rational number field. Then we prove that the Gaussian rat...

متن کامل

Free Z - module 1 Yuichi Futa Shinshu University Nagano , Japan Hiroyuki Okazaki Shinshu University Nagano , Japan Yasunari Shidama Shinshu University Nagano , Japan

In this article we formalize a free Z-module and its rank. We formally prove that for a free finite rank Z-module V , the number of elements in its basis, that is a rank of the Z-module, is constant regardless of the selection of its basis. Z-module is necessary for lattice problems, LLL(Lenstra, Lenstra and Lovász) base reduction algorithm and cryptographic systems with lattice [15]. Some theo...

متن کامل

Probing into morphology evolution of magnesium ethoxide particles as precursor of Ziegler-Natta catalysts

Mg(OEt)2 with spherical morphology is one of the most important precursors for the preparation of industrial Ziegler-Natta catalysts. In the present article, morphology evolution of Mg(OEt)2 particles is studied in the course of the synthesis. The morphology of Mg(OEt)2 particles is observed throughout the process by SEM. The results show that Mg(OEt)2 particles are formed through i) seed gener...

متن کامل

Active site nature of magnesium dichloride-supported titanocene catalysts in olefin polymerization

Heterogeneous Ziegler-Natta and homogeneous metallocene catalysts exhibit greatly different active sitenature in olefin polymerization. In our previous study, it was reported that MgCl2-supported titanocenecatalysts can generate both Ziegler-Natta-type and metallocene-type active sites according to the type of activators.The dual active site nature of the supported titanocene catalysts was furt...

متن کامل

Yuichi Futa Shinshu University Nagano , Japan Hiroyuki Okazaki

We introduce Z-module structures which are extensions of additive loop structure and are systems 〈 a carrier, a zero, an addition, an external multiplication 〉, where the carrier is a set, the zero is an element of the carrier, the addition is a binary operation on the carrier, and the external multiplication is a function from Z× the carrier into the carrier. Let us mention that there exists a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015